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 Preface 

Preface 
Nonresponse occurs in practically all sample surveys. Some decades 
ago, nonresponse rates were low, by today’s standards; they were 
no major cause for concern. However, survey nonresponse is on the 
increase in many countries, including Sweden.   

As is well known, high nonresponse has a negative impact on the 
quality of the statistics produced in a survey, unless powerful 
adjustment procedures can be brought to bear. In this regard, 
Statistics Sweden is in a comparatively favourable position, because 
the many administrative registers that are available provide a rich 
source of auxiliary information.  

Statistics Sweden has devoted considerable resources to the study of 
the nonresponse and its consequences. For a long time, nonresponse 
rates have been carefully monitored in most of the agency’s surveys. 
Over the past few decades several projects have focused on 
questions related to survey nonresponse. 

The present article by Carl-Erik Särndal and Sixten Lundström, 
Assessing Auxiliary Vectors for Control of Nonresponse Bias in the 
Calibration Estimator, contributes further insight into the biasing 
effects of nonresponse. The indicator examined in the article is a 
useful tool in diagnosing nonresponse bias. 
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Abstract  
This paper deals with calibration estimation for surveys with 
nonresponse. Efficient weighting adjustment for unit nonresponse 
requires powerful auxiliary information. The theory in the paper is 
inspired by the survey environment in Scandinavia (and in other 
North European countries), where many reliable administrative 
registers provide rich sources of auxiliary variables, in particular for 
surveys on individuals and households.  

The weights in the calibration estimator are computed on informa-
tion about a specified auxiliary vector. Even with the “best possible” 
auxiliary vector, some bias remains in the estimator. A close 
approximation to the remaining bias is presented and analyzed. The 
relationship between the bias expression and the auxiliary vector in 
use is a focal point in the article. 

The many potential auxiliary variables allow the statistician to 
compose a wide variety of possible auxiliary vectors. The need 
arises to compare these vectors to assess their effectiveness for bias 
reduction. To this end we define and examine an indicator useful 
for ranking alternative auxiliary vectors in regard to their ability to 
reduce the bias. 

The indicator is computed on the auxiliary vector values for the 
sampled units, responding and nonresponding. An advantage is its 
independence of the study variables, of which there are many in a 
large survey. The properties of the indicator are examined in the 
theory sections of the paper. The indicator tends, with increasing 
sample size, to a population analogue, shown to be linked to the 
bias through an approximately linear relationship. The higher the 
value of indicator, the more likely it is that the bias will be low, for 
many study variables. 

Empirical studies occupy the final sections of the paper. A synthetic 
population is constructed and potential auxiliary vectors are ranked 
with the aid of the indicator. Another empirical illustration 
illustrates how the indicator is used for selecting auxiliary variables 
in a large survey at Statistics Sweden. 
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Keywords:  administrative registers, auxiliary information, auxiliary 
vector, bias indicator, calibration estimator, nonresponse bias, 
response distribution, response influence. 
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1. Introduction 
When nonresponse occurs in a survey, a pressing objective is to 
“cleanse” the survey estimates of bias, through an efficient 
weighting scheme. This paper deals with calibration estimators for 
surveys with unit nonresponse. The calibrated weights are 
computed from information carried by an auxiliary vector, more or 
less powerful. A perfect auxiliary vector would be one that 
completely eliminates the bias. No such vector can be counted on in 
practice. Even the best of auxiliary vectors leave some bias 
remaining in a calibration estimator (or in any other type of 
estimator). Nevertheless, if estimates are to be produced at all in the 
survey, one must ultimately settle for one auxiliary vector and use it 
in the computation of calibrated weights and survey estimates. 

In practice, a pool of potential auxiliary variables is identified in a 
preliminary step. The search may involve a matching of different 
administrative registers. The Scandinavian countries, the 
Netherlands and several other countries in northern Europe are 
privileged, equipped as they are with many reliable administrative 
registers. In a typical survey on individuals and households, a pool 
of potential auxiliary variables will typically include categorical 
variables such as sex, age group, income class, country of origin, 
region of residence, family size, education level, professional group 
and a variety of others. 

With a given pool of potential auxiliary variables, a number of 
different auxiliary vectors can be formed. We need to compare these 
vectors to assess their effectiveness for bias reduction. Such a bias 
indicator was proposed on intuitive grounds by Särndal and 
Lundström (2005). This paper examines the properties of the 
indicator in further depth and shows its use as a tool for building 
the auxiliary vector, via, for example, a stepwise forward or a 
stepwise backward selection of variables, as Sections 9 and 11 
illustrate. 

It is known that desirable features of an auxiliary vector include the 
following: (i) it should explain the response pattern; (ii) it should 
well explain the study variable(s) in the survey, and (iii) it should 
identify the principal domains of interest in the survey. Särndal and 
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Lundström (2005) refer to (i) to (iii) as “principles for an auxiliary 
vector”. The emphasis in this paper is on the aspect (i).  

This paper is organized as follows: In Section 2 we specify the 
auxiliary information and the calibration estimator. A close 
approximation of its bias is given in Section 3. This expression, 
called nearbias, becomes the focus of attention in the following 
sections. It depends on (a) the known auxiliary vector values kx , (b) 

the unknown response probabilities kθ , and (c) the unknown study 

variable values ky . 

If the response probabilities were known, nonresponse bias would 
cease to be a problem: The inverse response probabilities, kk 1/θ=φ , 
would provide the weights necessary for unbiased estimation. We 
call kφ  the response influence of population unit k. It is an 
unobservable quantity, a latent trait of unit k. We produce predicted 
response influences with the aid of the known auxiliary vector 
values. This is done in two ways: In Sections 6 and 7, the predicted 
influences are theoretical values, defined for all N population units. 
Their computable, sample-based counterparts follow in Section 8.  

The proposed bias indicator, denoted Q̂ , is defined in Section 8 as 
the variance of the predicted influences of the responding units. An 
intuitive reason why such a variance can serve as an indicator of 
bias is that a variability in the predicted influences (which are 
surrogates for the true influences kφ ) is desirable to well reflect the 
unique features of the respondents. But more importantly, results in 
Sections 7 and 8 show that the nonresponse bias can be expected to 
decrease linearly, under certain conditions, when the value of the 

population analogue of Q̂  increases. 

A computation of Q̂  requires the values of the auxiliary vector for 
the sampled units, respondents as well as nonrespondents (but is 
independent of the study variable values). The composition of the 

auxiliary vector becomes critically important. The value of Q̂  
increases with the number of variables in the vector, and the 
prospects for reduced bias are improved. Section 9 discusses the 

uses of Q̂  as a diagnostic tool in the search for the “best auxiliary 
vector”, among those are possible in the survey. 
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A constructed population is used in Section 10 to confirm the 
theoretical properties of the bias indicator. The concluding Section 
11 shows the use of the bias indicator in the Swedish National 
Crime Victim and Security Study. The auxiliary vector is built 
through a stepwise selection of variables, with the aid of the 

indicator Q̂ . 
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2. Auxiliary information for the 
calibration estimator 
Adjustment weighting for nonresponse bias, with the use of 
auxiliary information, has been considered by several authors and 
from diverse angles, for example, Bethlehem (1988), Bethlehem and 
Schouten (2004), Deville (2002), Folsom and Singh (2000), Fuller, 
Loughin and Baker (1994), Harms (2003), Lundström (1997), Rizzo, 
Kalton and Brick (1996), Thomsen et al (2006). Some of these authors 
focus on the calibration approach to estimation, notably Deville 
(2002), Harms (2003) and Lundström (1997), and so does this paper, 
where the basic premises are as in the book by Särndal and 
Lundström (2005). 

We consider a finite population { }NkU ,...,,...,2,1= . A probability 
sample s  is drawn from  U . Nonresponse occurs. A response set  r  
is realized as a subset of s . We have rsU ⊆⊆ .The probability 
sample s  is drawn with a given sampling design that gives unit  k  
the known inclusion probability 0π >k .  The known design weight 

of  k  is kkd 1/π=  .  

The response set  r  results when the designated sample s  is exposed 
to an unknown response distribution )( srq , such that unit  k  has 

an unknown response probability kθ , assumed positive. Refusal, 
not-at-home or other types of nonresponse may lie behind a failure 
to record the value ky  of the study variable denoted  y , which is 
allowed to be continuous or categorical. (As an example of the 
latter, 1=ky  if k has a property of interest, such as “unemployed”, 

and 0=ky otherwise.) There may be yet other causes for a failure to 
obtain the desired y -data. Although called ‘response probability’, 

kθ  may be viewed more generally as the probability that the value 

ky  becomes recorded for the unit sk ∈ . With probability kθ-1  it 
goes missing, for whatever reason. Thus recorded data include the 
value ky  for rk ∈ and the outcome of the response: 1=kR  for 
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rk ∈ , 0=kR  for rsk −∈ . For any realized sample s, we assume 

kkq sRE θ)( = , where q   refers to the response phase.  

The use of auxiliary information is essential. Many surveys have 
information of two types, to which correspond two kinds of 
auxiliary vector,  ∗

kx  and  o
kx , with the following features: The 

vector ∗
kx  carries auxiliary information at the population level: Its 

value is known for every Uk ∈ , as when it is specified in the frame; 
thus ∗

kx  is known also for every sk ∈ and every rk ∈ . This 
situation is typical of surveys on individuals and households in 
Scandinavia and several other North European countries. Then the 
population total ∑ ∗

U kx  is obtained by simply adding the values 
∗
kx . We allow also the case where ∑ ∗

U kx  is imported from a 

reliable outside source, as when ∑ ∗
U kx  is allowed to include 

population counts taken from demographic sources on age group by 
sex by region. The individual value ∗

kx  is assumed known for every  

sk ∈  and consequently for every rk ∈ . (If A U⊆ is a set of units, 

we write 
A∑ for 

k A∈∑ .) 

The vector o
kx  carries auxiliary information at the sample level: its 

value is observed or otherwise known for every sk ∈  (and thus for 
every rk ∈ ). One example of this is when o

kx  expresses features of 
the data collection process, such as the identity of the interviewer 
assigned to unit  k. As another example, in the case of refusal, the 
interviewer may try the basic question ‘with the foot in the door’, as 
Kersten and Bethlehem (1984) put it. Yet another example occurs in 
countries equipped with several administrative registers: It is 
cumbersome to match at the level of the population with several 
million records, but more manageable to match at the level of the 
sample; the register information transcribed to the sample data file 
is then material for the o

kx -vector. A difference between o
kx  and ∗

kx  

in this paper is that ∑ ∗
U kx  is known while ∑U k

ox  is unknown. 

Nevertheless, the computable unbiased estimate ∑s kkd
ox is 

important information input for calibrated weight computation.  
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For a survey admitting both kinds of information, the auxiliary 
vector and the information to which we calibrate are 

kx = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∗

o
k

k

x
x

   ;   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=
∑
∑ ∗

o
ks k

U k

d x
x

X   (2.1) 

When the survey has only the first type of information then ∗= kk xx  

and ∑ ∗=
U kxX . When only the second kind of information is 

available, o
kk xx =  and o

ks kd xX ∑= . 

The target of the estimation is the y -total ∑= U kyY . Särndal and 

Lundström (2005) examine the calibration estimator of  Y  based on 

the information X  in (2.1). It is given by kr kW ywY ∑=ˆ  with 

weights kkk vdw = , where kkd π/1=  is the design weight and the 

factor kr kkkr kkk ddv xxxxX 1)()(1 −∑∑ ′′−+=  serves two objectives: 

To reduce the nonresponse bias and to reduce the variance of ŴY . 

The weights are calibrated to the given information: Xx =∑r kkw . 

In this paper we consider vectors kx  with the following property: 

There exists a constant vector µ  such that  

1=′ kxµ  for all Uk ∈              (2.2) 

 

‘Constant’ means that µ  must not depend on k, nor on s or on r. 

Condition (2.2) is not a major restriction on kx . A majority of x -
vectors of interest in practice are covered. Examples include the 
following. 

(1) ),1( ′= kk xx , where  kx   is the value for unit  k  of a continuous 
auxiliary variable  x; 

(2) the classification vector used to code J  mutually exclusive and 
exhaustive population groups,  ),...,,...,( 1 ′== Jkjkkkk γγγγx , so 

that, for Jj ...,,2,1= , 1=jkγ  if  k  belongs to group j  ,  and 

0=jkγ  if not; 
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(3) the combination of (1) and (2), ),( ′′′= kkkk x γγx ; 

(4) the vector kx  that codifies two classifications stringed out ‘side-

by-side’, and the dimension of  kx  is 121 −+ JJ , where 1J  and 2J  
are the respective number of categories, and the ‘minus-one’ is to 
avoid a singular matrix in the computation of weights; 

(5) the extension of (4) to more than two ‘side-by-side’ 
classifications. 

In view of (2.2), the calibration estimator is   

Ŵ k k k k kr r
Y w y d v y= =∑ ∑            (2.3) 

with kkd π/1=  and, with X  given by (2.1), 

kr kkkk dv xxxX 1)( −∑ ′′=      (2.4) 

 

Despite the “best possible” calibration, residual bias always remains 

in ŴY . This bias must lie at the centre of our attention, because the 
squared bias component often dominates the mean squared error. 
Unlike the variance, the bias does not approach zero with increasing 
sample size. 
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3. Expressions for the remaining 
bias 
The bias of WŶ  is derived jointly with respect to the sampling design 

)(sp with its (known) inclusion probabilities kπ and the response 

distribution )( srq  with its (unknown) response probabilities kθ . 

The bias of WŶ ,  =)ˆ(bias WY YsYEE Wqp −)ˆ( , is intractable, because 

WŶ  is non-linear. We focus on the approximation obtained by 

Taylor expansion, denoted )ˆ(nearbias WY . The approximation is 
close, even for rather modest sizes of the response set  r,  as 

simulations have shown. Although )ˆ(nearbias WY  is unknown, 
because a function of the whole population, it forms the basis for 
designing methods to reduce the bias. Särndal and Lundström 
(2005), chapter 9, derive the following expression for the nearbias: 

)ˆ(nearbias WY  = )()( θ; UUU k BBx −′∑    (3.1) 

where  kx = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∗

o
k

k

x
x

, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=
∑
∑∑

∗

U k

U k
U k ox

x
x , 

( ) ∑∑ −′=
U kkkU kkkU yxxxB θθ 1

θ; , and 

)()( 1 ∑∑ −′=
U kkU kkU yxxxB . Under mild conditions, 

)( )ˆ(nearbias)ˆ(bias(1/N) WW YY −  is of order 2/1−n ,  where n is the 
sample size. The derivation of (3.1) need not be reproduced here. 
Similar expressions are also given in, or can be derived from, 
sources such as Bethlehem (1988) and Fuller (2002), although their 
conditions differ from ours. 

To achieve )ˆ(nearbias WY = 0  is a farfetched possibility. It would 

happen if all kθ are equal, an unrealistic hope. As Result 4.1 will 

show, )ˆ(nearbias WY = 0 holds under yet another condition, but it is 
also one that will almost certainly not hold in practice. No matter 
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how good the auxiliary information, some bias remains; what we 
can do is to try to reduce it. 

A comment on our notation: Several symbols are given two indices, 
separated by a semicolon. The principle is that the first index shows 
the set of units over which the quantity is defined, and the second 
shows the weighting, as in θ;UB . In the case of equal weighting (‘an 

unweighted formula’), the second index is suppressed, as in UB .  

In studying the nearbias, we need not specify which variables in kx , 

if any, are of the ∗
kx  kind and which, if any, are of the o

kx  kind. An 

auxiliary variable kx  is equally efficient for reducing the nearbias 

when it belongs in o
kx  (carrying information to the sample level 

only) as when it qualifies for inclusion in ∗
kx  (carrying information 

up to the population level). One notes, however, that 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=
∑
∑∑

∗

U k

U k
U k ox

x
x  in (3.1) differs from the information X  used in 

computing the weights (2.3), as soon as the joint vector kx  contains 

an o
kx -component. 

That the nearbias (3.1) involves the difference between θ;UB  and  

UB  emphasizes one of the predicaments with nonresponse: We end 
up estimating not the desired (unweighted) regression coefficient 

UB , but the “tainted” regression coefficient θ;UB . The difference 

between the two causes a more or less pronounced bias in WŶ . An 
equivalent expression for (3.1) follows easily: 

)ˆ(nearbias WY  = kkU k eM∑ θ          (3.2) 

where Ukkk ye Bx′−=  is the ordinary least squares regression 
residual and 

kU kkkU kkM xxxx 1)θ()( −∑∑ ′′=    (3.3) 

 

We have 0=∑U ke  as a consequence of (2.2). In addition to (3.1) 

and (3.2), we need a third equivalent expression for the nearbias, 
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)ˆ(nearbias WY  = kkU k yM )1(θ −∑       (3.4) 

 

To see the equivalence with (3.2), note that 

)ˆ(nearbias WY  = kkU k yM∑ θ  UkkU kM Bx′−∑ θ  

A development of the last term now leads to (3.4): 

∑∑∑∑ =′′′=′ −
U UkkkU kkkU kUkkU kM )θ()θ()(θ 1 BxxxxxBx  

∑∑ =′
U kU Uk yBx  

 

The quantities kM , defined by (3.3) for all Uk ∈ , are important for 

diagnosing the bias. We can view kM  as a derived variable, 

contingent on the values kx  of the given auxiliary vector and on the 

(unknown) response probabilities kθ . 

We shall compare alternative kx -vectors in regard to their capacity 
to control the bias. As a benchmark we use the ‘primitive auxiliary 
vector’, 1=kx  for all Uk ∈ , which gives rr krW nyNyNY ∑== /ˆ , 

where rn  is the size of the response set r. Then 

UU kk NM θ/1θ/∑ ==  for all  k, and (3.4) reduces to the well-

known expression 

)(nearbias ryN  )( θ; UU yyN −=        (3.5) 

 

where ∑∑= U kkU kU yy θ/θθ;  and Nyy
U kU /∑= .  When the 

theta-weighted mean and the unweighted mean differ considerably, 

rW yNY =ˆ  has a large nearbias. For example, if large y -value units 
respond with low probability, there is a considerable negative 
nearbias. The vector  1=kx  recognizes no differences among units 
and is inefficient for nonresponse adjustment.   

We use two measures of relative bias. Each depends on three 
factors: (i) the  values kx  of the auxiliary vector used to compute 
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WŶ , (ii) the response probabilities kθ , and (iii) the values ky of the 
study variable. The first measure sets the nearbias in relation to the 
value of the target of estimation, UyNY = :  

U

W
W yN

YY )ˆ(nearbias
)ˆ(relbias =   =   

U

U kkk

yN
yM∑ − )1θ(

   (3.6) 

The second measure shows how well a specified vector kx succeeds 
in controlling the bias, when compared with the primitive vector: 

=P
)(nearbias

)ˆ(nearbias

r

W

yN
Y

  =
)(
)1θ(

θ; UU

U kkk

yyN
yM

−

−∑
            (3.7) 

When several candidate kx -vectors are compared, the more 
effective ones will bring comparatively smaller values of both 

)ˆ(relbias WY  and  P . 
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4. Response influence and zero 
nearbias 
As (3.2) shows, )ˆ(nearbias WY = 0 holds if the residuals 

Ukkk ye Bx′−=  are zero for all Uk ∈ , that is, if kx predicts 

ky without error, for every population unit. Most large surveys 
involve many  y-variables. To achieve a zero bias for every one of 
those would require the residuals ke to be zero for all units as well 
as for all  y-variables. To achieve this is a vain hope. However, if we 
focus instead on the response distribution, there are conditions 
under which the nearbias is zero for every y -variable.  

To see this, define the response influence of  k  as  kk θ/1=φ , 

assuming that 1θ0 ≤< k  for all  k. The unknown value kφ  can be 

seen as a latent trait of unit  k. A high influence kφ  accompanies a 

unit  k  with a low response probability kθ , just as a high sampling 

weight  kkd 1/π=  accompanies a unit with a low inclusion 

probability kπ . Prior to data collection, both kφ and ky  are 

unknown characteristics of unit Uk ∈ . But unlike the ky , the kφ  

remain unknown even for observed sample units. If the kφ were 
known, they would serve as weights for unbiased estimation. For 
example, kkr k yd φ∑  would be unbiased for ∑= U kyY , and 

nonresponse bias would cease to be a problem. 

We call kφ  ‘influence’ to distinguish it from ‘weight’, which is a 
known number that can be readily applied to an observed variable 
value. The unknown kφ do not qualify for this purpose. Still, they 

are important in the following. Their relation to the kM  is explained 
in section 6. 

An ideal auxiliary vector is one that perfectly explains the influence  

kφ . More precisely, an ideal vector kx is one that meets the 
following condition: 
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There exists a constant vector λ  such that 

kkk xλ′== θ/1φ    for all  Uk ∈         (4.1) 

 

In a survey, we cannot hope to find an ideal vector kx . But if one 
existed and could be used, the nearbias would be completely 
eliminated. This is the message of the following result given in 
Särndal and Lundström (2005). 

Result 4.1 

If  kx meets the condition (4.1), then  )ˆ(nearbias WY = 0.  

Proof 
When (4.1) holds, then  

=′′ −∑∑ 1)θ()(
U kkkU k xxx  λxxxxλ ′=′′′ −∑∑ 1)θ()θ(

U kkkU kkk  

so 1θ =kkM  for all Uk ∈ .  Hence, by (3.4), )ˆ(nearbias WY  = 0.  □ 
To illustrate, suppose the available information allows a 
classification of the population units or the sampled units into  J   
mutually exclusive groups. Then ),...,( 1 ′= Jkkk γγx , where 1=jkγ   

if  k  belongs to group  j   and  0=jkγ  if not. By Result 4.1, the 

nearbias is zero for this x -vector if the kθ  are constant within 
groups, for example, a set of age/sex groups for a population of 
individuals. Such an assumption is often made in practice. It is a 
convenient one, but few would believe it to hold true. The 
remaining bias can be large; better  x -vectors are sought. 
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5. Least squares prediction of the 
influence 
Consider a fixed auxiliary vector kx , as given in (2.1). The 

influences kk θ/1=φ  are unknown and non-observable, even for the 
units observed in a sample. We can, however, use the auxiliary data 

kx for sk ∈  to compute predicted influences, which will then serve 
to obtain the bias indicator. This is done in section 8. To motivate 
these sample-based predictions, we first examine the population-
based predictions of the kφ . Let us determine the vector λ  so as to 

minimize a (weighted) sum of the squared differences kk xλ ′−φ . 
Theta-weighted sums of squares are convenient here. We determine 
λ  to minimize 2)(θ∑ ′−=

U kkkWSS xλφ , where WSS stands for 

‘weighted sum of squares’. (It is assumed that not all kφ are equal.) 

We differentiate WSS  with respect to λ  and set the derivative equal 
to zero to get the estimating equation 

0xxλ ′=′′−∑ kU kkk )(θ φ  (5.1) 

or, equivalently, 

)()θ( ′=′′ ∑∑ U kU kkk xxxλ      (5.2) 

 
If the matrix on the left hand side is non-singular, the solution is  

1)θ()(ˆ −∑∑ ′′=′=′
U kkkU kU xxxλλ       (5.3) 

 
The resulting predicted value of kφ  is  

kkU kkkU kkUUk M=′′=′= −∑∑ xxxxxλ 1)θ()(ˆφ̂     (5.4) 

 
The quantities kM  defined by (3.3) reappear here. They were seen 
earlier to play an important role in the expressions (3.2) and (3.4) for 
the nearbias. 
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The minimum value of the criterion WSS is 

∑ ∑∑ −=′−=
U U kkU kUkk MWSS φφ 2

min )ˆ(θ xλ   (5.5) 

Since Uλλ ˆ= satisfies the estimating equation (5.2), we have  

0x ′=′−∑ kkU kM )1(θ   (5.6) 

Post-multiplying by the constant  µ  and using (2.2), we get 
0)1(θ =−∑ kU kM , or 

NM kU k =∑ θ     (5.7) 

 

The variation of the kφ  around their theta-weighted mean, 

UU U kkkU θ/1θ/θθ; ∑ ∑ == φφ , is measured by 2)θ/1(θ UkU k −∑ φ . 

This sum of squares has an orthogonal components decomposition: 

The vector kx  yields the predictions kUk M=φ̂  given by (3.3), and 
the equation “total variation = explained variation + residual 
variation” reads 

222 )(θ)θ/1(θ)θ/1(θ kkU kUkU kUkU k MM −+−=− ∑∑∑ φφ  (5.8) 

or, expanding and dividing through by  N, 

)()θ/1(θ/1 UUUUUU MM −+−=− φφ   (5.9) 

where 

∑= U kU N/φφ   ,    NMM
U kU /∑=  ,   N

U kU /θθ ∑=   (5.10) 

 

In obtaining (5.9) we have used that  ∑∑ =
U kkU k MM 2θ . 

By definition, the influences satisfy 1θ/1 >= kkφ  for all  k. This begs 

the question: Do the predictions satisfy 1ˆ >= kUk Mφ  for all  k? The 
answer is: Yes, for a great majority but not necessarily all  k. By the 
non-negativity of the first term on the right hand side of (5.9), their 
mean satisfies  1θ/1 >≥ UUM , which does not exclude that a few 

kM  may fail to exceed unity. This is no major drawback. 
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6. Moments of the predicted 
influences 
To see how the predictions kUk M=φ̂ are related to the nearbias of 

kr kW ywY ∑=ˆ , we need several moments of the kM : (i) the 

unweighted mean, NMM
U kU /∑= , (ii) the theta-weighted mean, 

∑∑= U kkU kU MM θ/θθ; , (iii) the theta-weighted variance, 

denoted  Q, (iv) the theta-weighted coefficient of variation, denoted  
H, and (v) the theta-weighted coefficient of correlation between 

kM and kφ , denoted φMr . The quantities Q , H and φMr  are 

unknown, because they depend on the unknown response 
distribution. Sample-based, computable analogues are given in 
section 8. 

Consider first the theta-weighted mean θ;UM . By (5.7), 

UU kU kkU kU NMM θ/1θ/θ/θθ; === ∑∑∑      (6.1) 

 

Thus θ;UM  depends on the response distribution (through the mean 

response probability Uθ ) but is independent of the auxiliary vector 

kx . By contrast, the unweighted mean UM  depends on kx . Key 

properties of UM  are shown in the following result. 

Result 6.1 
For any given auxiliary vector kx , NMM

U kU /∑=  satisfies  

UUUU MM θ/1θ; =≥≥φ    (6.2) 

where the different means are defined by (5.10). The lower bound 
on UM ,  Uθ1/  , occurs for the primitive vector, 1=kx  for all  k.  The 

upper bound on UM ,  Uφ , would be attained only for an ideal 

vector kx  that meets condition (4.1). 
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Proof 
The part UUM φ≤  follows from (5.5), because 0min ≥WSS . The part 

θ;UM = UU M≤θ/1  follows by the non-negativity of the first term 

on the right hand side of (5.8), whereby  
)θ/1()θ/1(θ0 2

UUUkU k MNM −=−≤ ∑ . That the upper and 

lower bounds hold for the specified  kx -vectors is easily verified. 

 □ 

The theta-weighted variance of the predictions kUk M=φ̂  for Uk ∈ , 
is 

Q = 2
θ; )(θ

θ
1

UkU k
U k

MM −∑∑
    (6.3) 

 

The quantity Q is important as the prototype for the bias indicator 

Q̂  in Section 8. Expanding the square and arranging terms we get 
using (6.1) 

∑∑
∑ −=

U kU k

U k NM
Q 2

2

)θ(θ
    )θ/1)(θ/1( UUU M −=    (6.4) 

 

Noteworthy properties of  Q  are:  (a)  for any given vector kx , 

0≥Q , because  Q  is a variance, hence non-negative; (b) the 

minimum value,  Q  = 0,  occurs for the primitive vector, 1=kx  for 

all  Uk ∈ ; (c) the upper bound on Q , denoted supQ , would be 

realized only for a vector kx  that meets the perfect fit condition 
(4.1); by Result 6.1 we have 

∑∑
∑ −=

U kU k

U k NQ 2

2

sup )θ(θ
φ

)θ/1)(θ/1( UUU −= φ   (6.5) 

(d) extending the kx -vector by adding further x-variables to it will 
increase the value of Q (or possibly leave it unchanged). The proof 
of this property relies on the fact that the extended vector produces 
at least as small a value of the term “explained variation” in (5.8), as 
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compared to the value of that same term for the shorter vector that 
excludes those additional variables. 

Another useful quantity is the coefficient of variation of the  kM , 

for Uk ∈ , given by 

1θθ −== UUU MQH      (6.6) 

 

That QUθ  is a coefficient of variation (standard deviation 
divided by corresponding mean), follows from the fact that Q  is the 
theta-weighted variance of the kM , and UUM θ/1θ; =  is the theta-

weighted mean. The upper bound on  H  is 1θsup −= UUH φ . 

The theta-weighted coefficient of correlation between  kM  and  kφ  
is 

φMr  = 
2/12

θ;
2/12

θ;

θ;θ;

)()( )(θ)(θ

))((θ

∑∑
∑

−−

−−

U UkkUkU k

UkUkU k

MM

MM

φφ

φφ
 

where UUUM θ/1θ;θ; == φ  by (6.1). Noting that 

UUU Ukk θ/1)(θ 2
θ; −=−∑ φφφ , and using (6.3) and (6.4), we get 

φMr  = 
UU

UUM
θ/1
θ/1

−
−

φ
                       (6.7) 

 

The coefficient of non-determination 21 Mr φ−  , which satisfies 
20 1 1Mr φ≤ − ≤ , has several useful expressions: 

UU

UU
M

Mr
θ/1

1 2

−
−

=−
φ
φ

φ = 
sup

1
Q
Q

−   =  2
sup

2

1
H
H

−        (6.8) 
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7. Towards a computable indicator 
of the bias 
The nearbias, given by any one of (3.1), (3.2) or (3.4), is expressed in 
the following result as the sum of a principal term that is linear in Q 
(and in 2H ) and an error term,  R, which is often small by 
comparison. 

Result 7.1 
Consider a given auxiliary vector kx  for the calibration estimator 

WŶ . Then 

)ˆ(nearbias WY  =  2
;θ( )(1 )U U MN y y r φ− − + R  (7.1) 

where  21 Mr φ− is given by (6.8) and  kkU k EMR ∑= θ  with 

UU

UU
UkUkk

yy
yyE

θ/1
)( θ;

−
−

−−−=
φ

φφ      (7.2) 

Proof 
To unit  k  belongs the values ky  and kφ . Let α  and β  be specified 
constants. Then we can also associate with unit  k  the unique value 

kkk yE φβα −−= . Let us fix α  and β  to be the values that 
minimize the theta-weighted sum of squares 

∑ −−
U kkk y

2)(θ βφα , namely,  
UU

UU yy
B

θ/1
θ;

−
−

==
φ

β  and 

UU ByA φα −== . Now insert kkk EBAy ++= φ in (3.4) and 
simplify to get 

)ˆ(nearbias WY  = kkkUUUkU k EMMNBMA )1θ()()1θ( −+−+− ∑∑ φ  

But )1θ( −∑ kU kM  = 0 by (5.7), and 0kU
E =∑ . Then (7.1) follows 

from (6.8). 

 □ 
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In a survey we need to compare different possible kx -vectors to 
assess their effectiveness for bias reduction. As a benchmark we can 
use the primitive auxiliary vector, 1=kx for all  k, which yields 

rW yNY =ˆ  and  )(nearbias ryN  = )( θ; UU yyN −  . For any other, 

more effective vector kx , Result 7.1 states that the principal term of 

)ˆ(nearbias WY  equals a proportion, 21 Mr φ− , of its value, 

)( θ; UU yyN − , for the primitive vector, for which 2 0Mr φ = . 

As the auxiliary vector kx improves and approaches its ideal form 

(4.1), UM  increases toward its upper bound  Uφ , the fraction 
21 φMr−  tends to zero, and )ˆ(nearbias WY  approaches zero. Thus the 

bias may be reduced considerably if steps are taken to strengthen 
the kx -vector. 

The remainder term R  in (7.1) is not in general zero, but it is indeed 
zero under any one of several conditions stated in the following 
result. 

Result 7.2 
Consider a fixed auxiliary vector kx . The remainder term  

kkU k EMR ∑= θ  in (7.1) is equal to zero under any one of the 

following four conditions: (i) kx is the primitive vector 1=kx for all  

k;  (ii)  kx  satisfies the perfect fit condition (4.1);  (iii) for some 

constant vector  µ, )( UkkE xxµ −′=  for Uk ∈ , where kE is given 

by (7.2); (iv) for some constants  0c  and 1c , kk ccy φ10 +=  for 

Uk ∈ . 

Here, condition (iii) states that kx  explains perfectly the variation 

remaining in ky  after a removal of the dependence on kφ . 

Condition (iv) states that the variation in ky  is perfectly explained 

by  the influence kφ , a case of “purely non-ignorable nonresponse.” 

Proof 
In case (i), the result follows by noting that 1/ θk UM =  for all k. In 

case (ii), )ˆ(nearbias WY is zero by Result 4.1, and the proportion 
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21 φMr−  in  (7.1) is also equal to zero, because UUM φ=  by Result 6.1. 

Hence,  R = 0. When case (iii) holds, then it follows from (5.6) and 
(5.7) that R = 0. When case (iv) holds, simple algebra shows that 

)ˆ(nearbias WY = )1()( 2
θ; φMUU ryyN −− = )(1 UUMcN φ− , hence R = 

0.  

 □ 
The following Result 7.3 is an immediate consequence of (7.1). 

Result 7.3 
If the term  R  in  (7.1) is small in comparison with the first term on 
the right hand side of (7.1)  then  

P =
)(nearbias

)ˆ(nearbias

r

W

yN
Y

  =
)(
)1θ(

θ; UU

U kkk

yyN
yM

−

−∑
  21 Mr φ≈ −          (7.3) 

where the coefficient of non-determination  21 Mr φ−  has the 

alternative forms shown in (6.8). 

The ratio P = )(nearbias/)ˆ(nearbias rW yNY measures how well the 

given vector kx  succeeds in controlling the bias, when compared to 
the primitive vector. This ratio depends on three factors: (i) the 
values of the kx -vector, (ii) the response probabilities kθ , and (iii) 

the study variable values ky . The ratio is approximated in (7.3) by 
21 Mr φ− , which depends on the first two factors but is independent of 

the y-variable. Thus 21 Mr φ− represents “the part of the nearbias ratio  

P  that is independent of the study variable”. 

When different kx -vectors are at our disposal in a survey, we seek 
one that is likely to be best for controlling the bias of all study 
variables  y  in the survey. If  R  is small, formula (7.3) suggests that 
we should seek an kx -vector with a large value of Q or of  H. If we 
concentrate on  Q, formula (7.3) shows the nearbias to be roughly a 

linear function of  Q, )ˆ(nearbias WY  ≈  QCC 10 − , where 

)( θ;0 UU yyNC −=  and  sup01 /QCC =  do not depend on kx . 

When a certain kx -vector is replaced by “an improved one”, with 
an accompanying increase in the value of Q, then we expect the 
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absolute value of )ˆ(nearbias WY  to be reduced in a roughly linear 

manner. Ideally, the chosen vector kx should bring about a value of  

Q near to its upper bound supQ , because then the nearbias would be 

near zero for all y -variables in the survey. 

Formula (6.3) defines Q  as the variance of the predicted influences 

kUk M=φ̂ . We conclude that the greater the variance of these 
predictions, the better the chances that the bias will be small. This 

rhymes with the intuition that the more the predictions Ûkφ  can 
reflect the unique features of the respondents, the better the chances 
for a small bias. 

Neither the variance  Q  nor the coefficient of variation  H  are 
computable in a survey, because they depend on the whole 
population with its unknown response probabilities. In empirical 
experiments, such as those reported in Section 10, we can, however, 
study the relationship between  Q  and the nearbias. The sample-

based counterpart of Q , denoted  Q̂ , is given in Section 8, and  

Section 9 shows how Q̂  can be used as a diagnostic tool for 
indicating the bias.  
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8. Sample-based counterparts 
The population-based quantities kM ,  Q  and  H  have sample-

based analogues, km , Q̂  and Ĥ , which we now define. They can be 

computed from two sources of input: (i) the vector values kx = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∗

o
k

k

x
x

 , 

known for sk ∈ , and (ii) the outcome of the response phase, that is, 
1=kR  for rk ∈  and  0=kR  for rsk −∈ . They do not depend on 

the y -values. 

Formula (5.4) gives the predicted influences for Uk ∈ as 

kkUUk M=′= xλ̂φ̂ , where Uλ ′ˆ  is the solution of the population-based 
estimating equation (5.2). The corresponding sample-based 
estimating equation for λ  is obtained by substituting unbiased 
estimates for the population sums in (5.2). These estimates are 

∑s kkd x  and ∑ ′
r kkkd xx , noting that 

∑∑∑ ′′′ ==
U kkks kkkkpr kkkqp dEsdEE xxxxxx θθ )()( ))( . The 

estimating equation is ( ) ( )′=′′ ∑∑ s kkr kkk dd xxxλ ; its solution is 

=′=′ sλλ ˆ ( ) ( ) 1−∑∑ ′′
r kkks kk dd xxx , supposing the matrix can be 

inverted. The sample-based prediction of kφ  , computable for sk ∈ , 
is 

kssk xλ′= ˆφ̂  = km  ( ) ( ) kr kkks kk dd xxxx 1−∑∑ ′′
=     (8.1) 

 

We have kr kmd∑  = ∑s kd , which implies that kr kmd∑  is an 

unbiased estimate of the population size  N, because ∑s kd has this 

property. The quantities km are related to (but not in general equal 

to) the weight factors kv  in the calibration estimator Ŵ k k kr
Y d v y=∑  

given by (2.3). We do have km = kv  when the auxiliary information 

is exclusively at the sample level, so that kx  = o
kx . Otherwise, km  
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and kv differ by a usually small amount. Two different weighted 

means of the km  now become important: 

∑
∑

∑
∑ ==

r k

s k

r k

kr k
dr d

d
d
md

m ;      ;      
∑
∑=

s k

s kk
ds d

md
m ;        (8.2) 

 

The quantity Q was defined by (6.3) and (6.4) as the (theta-

weighted) variance of the predicted influences kUk M=φ̂  for Uk ∈ . 

By the same logic, Q̂  is defined to be the (design-weighted) 

variance of the predictions =skφ̂ km  for rk ∈ : 

2
; )(1ˆ
drkr k

r k

mmd
d

Q −= ∑∑
              (8.3) 

 

A simple development gives 

∑
∑

∑
−=

r k

s k

r k d
d

d
WQ 2

2

)(
)(ˆ )( ;;; drdsdr mmm −=       (8.4) 

where 
)()()( 12 ∑∑∑∑∑ −′′===

s kkr kkks kks kkr kk dddmdmdW xxxx . 

Since 0ˆ ≥Q  and 1; ≥drm , it follows that ; ;s d r dm m≥ . It is useful to 

remember the interpretation of Q̂  as the variance of the sample-
based predicted influences. But a familiar line of reasoning allows 

an alternative interpretation of Q̂ : Replace each population sum in 
Q  given by (6.4) by its corresponding unbiased estimate: In place of 
the sums ∑ ′

U kkk xxθ , ∑U kθ , ∑U kx  and  N  in Q , substitute their 

respective unbiased estimates, ∑ ′
r kkkd xx , ∑r kd , ∑s kkd x  and 

∑s kd . Then ∑U kM )()θ()( 1 ∑∑∑ −′′=
U kU kkkU k xxxx  in (6.4) 

becomes replaced by ∑= s kkmdW , and we have arrived at (8.4).  

Some properties of Q̂  are: (a) For any given auxiliary vector kx , 

0ˆ ≥Q , because Q̂  is a variance; (b) 0ˆ =Q  for the primitive vector, 
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1=kx  for all  k; (c) 0ˆ =Q  when r = s, that is, when the response is 

complete; (d) 0ˆ =Q  if drds ;; xx = ; (e) unlike  Q  given by (6.4), Q̂  

does not have a specifiable upper bound; (f) for a given kx , Q̂  

converges in probability, under mild conditions, to the value Q , 
because to each population sum in Q  corresponds a design 

unbiased estimate in Q̂ ;  (e) the convergence of Q̂  to Q  may be 

rather slow, and the sample-to-sample variability of Q̂  may be 
considerable, unless both  s  and  r  are rather large sets. For best 

results, Q̂  should be used with the large sample sizes, often more 
than one thousand units, that are typical of government surveys 

The population-based coefficient of variation H given by (6.6) has a 
sample-based analogue, computable on the values  km  for rk ∈ , 
namely, 

Q
m

H
dr

ˆ1ˆ
;

=  1
;

; −=
dr

ds

m
m

 

Both Ĥ  and Q̂  give the same ranking of kx -vectors, but one may 

prefer Ĥ  since it mitigates the tendency present in  Q̂   to increase 
with increasing rates of survey nonresponse. 

The indicator Q̂  was introduced on intuitive grounds in Särndal 
and Lundström (2005), under the notation IND1, and used there to 
compare different candidate vectors kx  in regard to their potential 

for bias reduction. This role of Q̂  is further developed in the 
following sections. A different tool for the selection of x-variables, 
among the many that may be at hand, is developed and illustrated 
in Bethlehem and Schouten (2004). It has no direct resemblance to 

Q̂ , although both attempt to meet the same goal. Rizzo, Kalton and 
Brick (1996) agree with the two just cited sources in viewing the 
choice of auxiliary variables as a comparatively more important 
question than the choice among alternative algorithms for 
computing the weights once a set of such variables has been fixed.  

 



Assessing Auxiliary Vectors for Control of Nonresponse Bias in the Calibration Estimator 

36 Statistics Sweden 

 

 



 A diagnostic tool for assessing the bias reduction potential of an auxiliary vector 

Statistics Sweden 37 

9. A diagnostic tool for assessing 
the bias reduction potential of an 
auxiliary vector 
When a survey encounters a sizeable nonresponse, the onus is on the 
survey producer to adjust the estimates. A rich source of auxiliary 
data is a necessary prerequisite. Such an environment is found 
notably in a number of North European countries, where reliable 
registers of total population provide extensive auxiliary data for 
surveys on individuals and households. These data bases contain 
many potential auxiliary variables. Following a preliminary inventory 
aimed at identifying a set of potential x-variables, a range of possible 
auxiliary vectors kx can be considered. We want to compare those 
vectors in regard to their capacity to reduce the bias remaining in the 

calibration estimator ∑= r kkW ywŶ . In practice, one vector will 

ultimately be chosen for computing the weights kkk vdw = . 

How do we compare the various candidate vectors kx  to assess their 

capacity to reduce as the bias of WŶ ? (Both types of information, ∗
kx  

and o
kx , may be present in kx .) The approximation (7.3) suggests that 

an increase in Q  = )( kQ x is accompanied by a roughly linear 
decrease in the nearbias. The empirical evidence in Section 10 
supports this contention. But )( kQ x depends on the whole population 

and must be replaced in practice by Q̂  = ˆ ( )kQ x  given by (8.3) or (8.4). 

What assurance do we have that )(ˆ
kQ x will guide us correctly to the 

preferred kx -vector? Suppose we compare two possible x-vectors, 

k1x  and k2x , related hierarchically so that k2x  is made up of k1x  and 

an additional vector k+x : ),( 12 ′′′= +kkk xxx . Then )()( 12 kk QQ xx ≥  by 

property (d) in Section 6. That is, adding further variables to k1x  
increases the value of Q. The same holds for the sample-based 

counterparts: )(ˆ)(ˆ
12 kk QQ xx ≥ , for any realized sample s and 
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response set r. This still does not guarantee that the bias is smaller for 

k2x  than for k1x , but (7.3) suggests that this is so. In other words, if Q 

indicates that k2x  is preferred to k1x , then Q̂  will agree with this 
indication, for any realization (s, r). 

The situation is different if the compared vectors k2x  and k1x  are 

not related hierarchically, that is, when k2x  is not obtainable by 

adding further auxiliary variables to k1x . Then )(ˆ)(ˆ
12 kk QQ xx ≥ may 

hold for some realizations (s, r), but not necessarily for all. 

As Section 11 illustrates, )(ˆ
kQ x provides a tool for a stepwise 

selection of  x-variables from a pool of  J  potentially interesting x-
variables, categorical or continuous. In the first step of a stepwise 

forward procedure, compute )(ˆ
kQ x for each single x-variable; retain 

the one that yields the largest value of )(ˆ
kQ x . In the second step, 

compute )(ˆ
kQ x  for each of the 1−J   vectors kx  composed of the 

variable from step one and one additional x-variable; of those, retain 

the one that yields the highest increase in )(ˆ
kQ x , and so on, if 

further steps are deemed necessary. Typically, the consecutive 

increases in )(ˆ
kQ x will taper off, since the best variables enter first. 

The empirical evidence in Section 11 confirms this pattern. 

An alternative is to use )(ˆ
kQ x  for a stepwise backward deletion of x-

variables, one at a time: Start with the vector kx comprising all  J  x-
variables deemed of interest. There are two reasons why one may not 
wish to retain all variables in that vector: (i) some of the x-variables 
contribute little to the objective of reducing bias, and (ii) inspection 
may reveal some undesirably large or small weights. Compute first 

the value of )(ˆ
kQ x for the full vector; then compute )(ˆ

kQ x  for every 

one of the 1−J  different vectors with one x-variable deleted. The 

vector that causes the least reduction in )(ˆ
kQ x  is retained, provided a 

renewed inspection of the weights is satisfactory. If desired, the 
stepwise deletion continues: If at any step deletion causes a significant 

drop in )(ˆ
kQ x , it is a sign that the x-variable in question is important 

for bias reduction and should not be sacrificed. 
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10. Empirical study of the relation 
between the nearbias and the bias 
indicator 
The objective is to study the behaviour of )( kQ x and )(ˆ

kQ x . First, 

let us examine how well )( kQ x succeeds in tracking the value of 

))(ˆ(nearbias kWY x . We compose a number of auxiliary vectors kx , 

we compute both ))(ˆ(nearbias kWY x and  )( kQ x  for each vector, and 

observe how these two quantities move together when kx changes. 

By Result 7.1, we expect )( kQ x  to rank the vectors kx  in regard to 
their ability to reduce the bias, if not perfectly, so at least with a high 
rate of success. We expect a comparison of two possible vectors k1x  

and k2x  to show that when )()( 12 kk QQ xx > , then 

))(ˆ(nearbias))(ˆ(nearbias 12 kWkW YY xx < , and this regardless of the 
response distribution, which is unknown in practice.  

A study of this kind requires values ky , kx  and kθ  specified for 

Nk ,...,2,1= . We experimented with several constructed 
populations. The main conclusions were similar. Results are 
reported here for one population. We used 16 different vectors kx . 
To get some representation of different response conditions, we 
used four different response distributions with specified response 
probabilities kθ , Nk ,...,2,1= . For each response distribution, we 

compute ))(ˆ(nearbias kWY x and ( )kQ x  for the 16 different kx -

vectors. We also compute the nearbias ratio )( kP x and the 

coefficient of non-determination )( kT x , defined respectively as 

)(
))(ˆnearbias(

)(
θ;

W

UU

k
k yyN
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=
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We plot the 16 points )( )(),( kk TP xx . The primitive vector 1=kx  
gives the point (1,1). The other 15 points lie inside the unit square. If 
the term  R  is small, Result 7.3 suggests that the points will align 
themselves, apart from some scatter, around the diagonal of the unit 
square, and that a decrease in )( kT x  is accompanied by a linear 

decrease in )( kP x . The results shown later confirm these 

expectations. (Note that )( kP x  = )( kT x = 0 would occur for an kx -
vector that satisfies condition (4.1). Our study has no such ideal 
vector, but )( kP x  and )( kT x come close to zero for some of our 

vectors kx . Note also that if the numerator in the ratio )( kP x is near 

zero, as it is for a very powerful kx -vector, then )( kP x may have a 
small negative value. This did not occur in the experiment reported 
here.) 

We constructed a population with values 1 2( , , ,θ )k k k ky x x  specified 

for 000,6,...,2,1 == Nk , where kx1  and kx2 are the values for unit k 

of two continuous auxiliary variables, 1x  and 2x , ky  is the value of 

the continuous study variable, y , and kθ  is the response 

probability of  k. The 6,000 values ),,( 21 kkk xxy  were obtained by the 
following steps:  

Step 1 
The continuous auxiliary variable 1x . The values kx1 , 

1,2,..., 6000k N= = , were created as independent outcomes of the 
gamma distributed random variable ),( baΓ  with parameter values 

2=a , 5=b . This theoretical mean is 10
1

== baxµ ; the theoretical 

variance is 5022
1

== baxσ . The mean of the 6,000 realized values 

kx1  was 10.0 and the variance was 49.9. 

Step 2 
The continuous auxiliary variable 2x . For unit  k, with the value kx1  

fixed in Step 1, a value kx2  is realized as an outcome of the gamma 

random variable ),( kk BAΓ , with parameters 
22

1212
/)(

kkkk xxxxkA σµ=  and 
kkkk xxxxkB 1212

/2 µσ= , where  
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)( 1112 kkxx xhKx
kk

++= βαµ    ;   kxx x
kk 1

22
12

σσ =      (10.1) 

with  )3)(()(
11 1111 xkxkkk xxxxh µµ −−= . Suitable values were 

assigned to the constants α , β , K  and 2σ . The conditional 

expectation of kx2  given  kx1   is the sum of the linear term kx1βα +  

and the polynomial term )( 1kxhK , which gives a somewhat non-

linear appearance to the plotted points ),( 12 kk xx . This was done on 
purpose, to avoid an argument that some simulation results may 
happen just because of a linear relationship. We used the values 

1α = , 1=β , 001.0=K , 10
1
=xµ  and 2 25σ = . The mean and 

variance of the 6,000 realized values kx2  were  11.0 and 210.0,  

respectively. The correlation coefficient between 1x  and 2x , 

computed on the  6,000 couples ),( 21 kk xx , was  0.48.  

Step 3 
The continuous study variable y .  For unit  k, with values kx1  and 

kx2  fixed by Steps 1 and 2, a value ky  is realized as an outcome of 

the gamma random variable ),( kk baΓ  with 
2

,
2

, 2121
/)(

kkkkkk xxyxxyka σµ=  and  
kkkkkk xxyxxykb 2121 ,

2
, / µσ= , where 

kxxy mc
kkk

+= 0, 21
µ     ;   kMxxy m

kkk

22
, 21

σσ =    ;   kkk xcxcm 2211 +=   (10.2) 

 

The conditional expectation of ky  given kx1  is 

))(( 112110 kkk xhKxcxcc ++++ βα . We used the values 0 1c = , 

1 0.7c = , 2 0.3c = and 22 =Mσ . (The values of α , β , K  and 2σ are 
fixed by Step 2.) The mean and the variance of the 6,000 realized 
values ky  were 11.4  and 86.5, respectively. The correlation 

coefficient between  y  and 1x , computed on the  6,000 couples 

),( 1kk xy , was 0.76. The correlation coefficient between  y  and 2x , 

computed on the  6,000 couples ),( 2kk xy , was 0.73. 

The 16 alternative auxiliary vectors kx  were constructed by equally 

many different uses of kx1  and kx2 . We transformed each variable 
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into a categorical, size-grouped variable, as is often done in practice 
to gain stability. The 6,000 variable values kx1  were size ordered, 
and eight groups were formed. The first group consists of the units 
with the 750 largest values kx1 , the second group consists of the 
next 750 units of the size ordering, and so on. The same procedure 
was used to group the 6,000 values kx2 . Each variable was used in 
four different group modes: 

• Mode  8G:  Used as categorical with the eight size groups,  
 numbered 1 to  8; 

• Mode  4G:  Used as categorical with four merged size groups; 

• Mode  2G:  Used as categorical with two merged size groups; 

• Mode  N:  Not used (a merger of all size groups into one). 
 

In mode 8G of variable 1x , unit k is assigned the vector value 

kx )8;( 1
γ , a vector of dimension eight consisting of seven entries “0” 

and a single entry “1”, marking the size group to which k belongs. 
For example, the vector value )0,0,0,1,0,0,0,0()8;( 1

′=kxγ  states that 

unit k belongs to size group five of the 1x -variable. In the successive 
mergers that follow, two adjoining groups will define a new group, 
doubling the group size. We get mode 4G by merging groups 1 and 
2, putting the units with the 1,500 largest kx1 -values into a first new 
group, the merger of groups 3 and 4 forms a second new group, and 
so on. This assigns to unit  k  the vector value kx )4;( 1

γ . For mode 2G, 

unit k has the vector value kx )2;( 1
γ ; for example, )0,1()2;( 1

′=kxγ  states 

that k belongs to the first of the two new groups, each of size 3,000. 
Merging causes a successive loss of information. In the ultimate 
mode N, all groups are merged together, all 1x -information is 

relinquished, and 1)1;( 1
=kxγ   for all k.  

The variable 2x  is put to use in the same four modes; the group 

information for unit k is coded  by the vectors kx )8;( 2
γ , kx )4;( 2

γ , kx )2;( 2
γ  

and 1)1;( 2
=kxγ . Now 4 × 4 = 16 different auxiliary vectors kx  are 

formed by using the group information as shown in the following 
display.  
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Use made of  kx2  Use made of kx1  

Eight size 
groups 

Four size 
groups

Two size 
groups

Not used 

Eight size groups 8G+8G 8G+4G 8G+2G 8G+N 
Four size groups 4G+8G 4G+4G 4G+2G 4G+N 
Two size groups 2G+8G 2G+4G 2G+2G 2G+N 
Not used N+8G N+4G N+2G N+N 

 

The “+” indicates that the kx -vector is formed by placing the γ -
vectors “side by side”, the effect being a calibration on the margins. 
That is, the case 8G+8G has the auxiliary vector 

)1()8;()8;( ),(
21 −′′′= kxkxk γγx , where “-1” indicates that one category is 

excluded in either kx )8;( 1
γ  or kx )8;( 2

γ  to avoid a singular matrix, 

giving kx the dimension 8+8-1 = 15. The case 8G+8G makes the 
most complete use of the group information. At the other extreme, 
the case N+N disregards all the information and gives the primitive 
auxiliary vector 1=kx  for all  k. There are 14 intermediate cases. For 

example, the case 4G+2G has )1()2;()4;( ),(
21 −′′′= kxkxk γγx , of dimension  

4+2-1 = 5;  the case 4G+N has kxkxk )4;()1()4;( 11
)1,( γγx =′′= − , and so on. 

We report results for four different response distributions: 

(i) IncExp(10+ 1x + 2x ), defined by  1 2(10 )θ 1 k kc x x
k e− + += −  with  c  =  

0.04599 
(ii) IncExp(10+ y ), defined by  (10 )θ 1 kc y

k e− += −  with c = 0.06217 

(iii) DecExp( 1x + 2x ), defined by  1 2( )θ k kc x x
k e− +=  with  c =  0.01937 

(iv) DecExp( y ) , defined by   θ kcy
k e−=  with  c  = 0.03534 

 

The constant c was chosen in each option to deliver a mean response 
probability of 70.0/θθ ∑ ==

U kU N . The value 10 (rather than 0) is 

used in options (i) and (ii) to avoid a high incidence of very small 
response probabilities kθ . The four options represent contrasting 
features of the response probabilities: decreasing as opposed to 
increasing, dependent on x-values only as opposed to dependent on 
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y-values only. The preceding theory suggests that the linear 
relationship between ( )kQ x and the nearbias will prevail for most 
response distribution, but “unusual” response patterns can always 
interfere with this property. Options (ii) and (iv), where the 
response is entirely y-variable dependent, might be called “purely 
non-ignorable”. Many other choices could be considered in an 
experimental study; we expect the principal conclusions to be 
similar. 

Tables 10.1 to 10.4 show 

=))(ˆ(relbias kWY x )/())(ˆ(nearbias UkW yNY x , and (in parenthesis) 

the value of ( )kQ x (both quantities multiplied by 100) for the 16 kx -

vectors. In each table, the case N+N gives ( )kQ x  = 0, and 

))(ˆ(relbias kWY x is at its highest level. At the other extreme, the case 

8G+8G gives the highest value of ( )kQ x  and the lowest value of 

))(ˆ(relbias kWY x . Other cases are intermediate. An increase in the 

value of ( )kQ x is in a vast majority of all cases accompanied by a 

decrease in ))(ˆ(relbias kWY x , as the preceding theory suggests. To 
each table corresponds one of the Figures 10.1 to 10.4, showing the 
plot of the points )( )(),( kk TP xx for the 16  auxiliary vectors kx . 
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Table 10.1. Relbias )(ˆ( kWY x in %  and value of  )( kQ x in % (within 

parenthesis) for 16 auxiliary vectors kx . Response distribution 

IncExp(10+ 1x + 2x ) 

Use made of kx2  Use made of kx1  

Eight size 
groups 

Four size 
groups

Two size 
groups

Not used 
 

Eight size groups 0.2 (9.5) 0.4 (9.3) 1.3 (8.7) 3.4 (6.5) 
Four size groups 0.5 (9.2) 0.8 (9.0) 1.8 (8.4) 4.1 (6.0) 
Two size groups 1.5 (8.5) 1.9 (8.2) 3.2 (7.3) 6.5 (4.3) 
Not used 4.1 (6.7) 5.0 (6.3) 7.3 (5.0) 13.2 (0.0) 

 

Figure 10.1. Plot of )( )(),( kk TP xx  for 16 auxiliary vectors kx . 

Response distribution IncExp(10+ 1x + 2x ) 

0

1

0 1

P

T

 
 



Assessing Auxiliary Vectors for Control of Nonresponse Bias in the Calibration Estimator 

46 Statistics Sweden 

Table 10.2. Relbias )(ˆ( kWY x in %  and value of  )( kQ x in % (within 

parenthesis) for 16 auxiliary vectors kx . Response distribution 
IncExp(10+ y ) 

Use made of kx2  Use made of kx1  

Eight size 
groups 

Four size 
groups 

Two size 
groups

Not used

Eight size groups 3.6 (4.3) 3.8 (4.2) 4.3 (4.0) 5.3 (3.6)
Four size groups 4.0 (4.1) 4.3 (4.0) 4.9 (3.8) 6.0 (3.3)
Two size groups 4.9 (3.6) 5.3 (3.5) 6.2 (3.3) 7.9 (2.5)
Not used 7.1 (2.4) 7.9 (2.2) 9.6 (1.6) 13.1 (0.0)

 

Figure 10.2. Plot of )( )(),( kk TP xx  for 16  auxiliary vectors kx . 
Response distribution IncExp(10+ y ) 
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Table 10.3. Relbias )(ˆ( kWY x in % and value of )( kQ x in % (within 

parenthesis) for 16 auxiliary vectors kx . Response distribution 

DecExp( 1x + 2x ) 

Use made of kx1  Use made of  kx2  

 Eight size 
groups 

Four size 
groups

Two size 
groups

Not used 
 

Eight size groups -2.8 (20.1) -3.9 (17.0) -5.6 (13.6) -7.6 (10.3) 
Four size groups -3.5 (19.3) -4.8 (16.0) -6.6 (12.3) -8.8 (8.8) 
Two size groups -4.9 (18.0) -6.4 (14.4) -8.7 (10.1) -11.5 (5.8) 
Not used -7.2 (16.4) -9.1 (12.3) -12.6 (6.7) -17.7 (0.0) 

 

Figure 10.3. Plot of )( )(),( kk TP xx  for 16  auxiliary vectors kx . 

Response distribution DecExp( 1x + 2x ) 
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Table 10.4. Relbias )(ˆ( kWY x in % and value of )( kQ x in % (within 

parenthesis) for 16 auxiliary vectors kx . Response distribution 
DecExp( y ) 

Use made of kx1  Use made of  kx2  

 Eight size 
groups 

Four size 
groups 

Two size 
groups

Not used

Eight size groups -8.2 (12.6) -8.9 (11.7) -9.8 (10.6) -11.0 (9.5)
Four size groups -9.0 (11.6) -9.8 (10.5) -10.9 (9.3) -12.2 (8.0)
Two size groups -10.5 (10.0) -11.5 (8.7) -12.9 (7.0) -14.8 (5.3)
Not used -12.9 (7.8) -14.4 (6.1) -16.8 (3.5) -20.5 (0.0)

 

Figure 10.4. Plot of )( )(),( kk TP xx  for 16 auxiliary vectors kx . 
Response distribution  DecExp( y ) 
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The tables and the figures prompt several comments: 

1) Comparing x -dependent response distributions with y -
dependent response distributions. The best of the auxiliary 
vectors yield near-zero nearbias for the x-dependent response 
distributions. For example, Table 10.1 for IncExp(10+ 1x + 2x ) 
shows a nearbias (in %) decreasing from 13.2 (case N+N) to  0.2 
(case 8G+8G). Although the decreasing pattern holds also for the 
y -dependent response distributions, a difference is that the 

nearbias does not come close to zero for the best vectors. For 
example, in Table 2 for IncExp( y ) the decrease progresses from 

13.1 (case N+N) to 3.6 (case 8G+8G). To use a powerful kx -vector 
is important also for non-ignorable nonresponse. 

2) Linear relationship between  )( kT x  and )( kP x .  The visual 
impression in all of Figures 10.1 to 10.4 is one of strong linearity. 
Results 7.1 and 7.3 lead us to expect that as the auxiliary vector 

kx  improves, )( kT x  and )( kP x decrease together in a nearly 
linear fashion. To measure the linearity, we computed the 
product-moment correlation coefficient, denoted  TPr  , based on 

the 16 points )( )(),( kk TP xx . Table 10.5 shows values of TPr  near 
one for all four response distributions, indicating near perfect 
linearity. We also computed the Spearman rank correlation 
coefficient, denoted TPR , based on the 16 points )( )(),( kk TP xx . 

Table 10.5 shows that TPR  is also near one for all four response 

distributions, so for this population, )( kT x gives an almost 

perfect ranking the kx -vectors. It follows that )( kQ x has the 

same favourable property, because )( kQ x  is a linear function of 

)( kT x . 

3) The size of the remainder term  R.  Result 7.3 leads us to expect 
the points )( )(),( kk TP xx  aligned, except for some scatter, 
around the diagonal of the unit square. This assumes that the 
term R in 7.3 is comparatively small. The diagonal pattern is 
strong in Figures 10.1, 10.2 and 10.4, but is somewhat less 
pronounced in Figure 10.3 for DecExp( 1x + 2x ), although the 
linear relationship remains strong. Figure 10.3 exemplifies a case 
where the remainder term  R  in (7.1) is not negligible, compared 
to the principal term. 



Assessing Auxiliary Vectors for Control of Nonresponse Bias in the Calibration Estimator 

50 Statistics Sweden 

4) Interactions.  There is non-negligible interaction between 1x  and 

2x  in the population constructed for this experiment. We found 
that cross classification, for example, 2G×2G, gave smaller values 
of nearbias (and correspondingly lower values of )( kQ x ), as 
compared to a corresponding “side by side” arrangement, such 
as 2G+2G, which disregards interactions. 

 

Table 10.5. Product-moment correlation coefficient TPr , and Spearman 

rank correlation coefficient TPR , for four response distributions; both 

correlations computed on 16 points )( )(),( kk TP xx , corresponding to 

16 vectors kx  

Response distribution 
TPr  TPR  

IncExp(10+ 1x + 2x ) 0.99 0.99 

IncExp(10+ y ) 1.00 0.99 

DecExp( 1x + 2x ) 0.95 0.92 

DecExp( y )  1.00 0.99 

 

Tables 10.1 to 10.4 and Figures 10.1 to 10.4 show, for the population 
used here, that, if computable, )( kQ x  would be a good instrument 

for ranking the possible kx -vectors. In an actual survey, we must 

rely on the sample-based analogue )(ˆ
kQ x . This begs the question: 

How well does  )(ˆ
kQ x  succeed in ranking the kx -vectors? 

For row-wise and for column-wise comparisons in Tables 10.1 to 
10.4, the kx -vectors are in a hierarchical relationship, in the sense of 

Section 9. We know that if the vectors k1x  and k2x  belong in the 

same table row or in the same table column, and )()( 12 kk QQ xx ≥ , 

then )(ˆ)(ˆ
12 kk QQ xx ≥  follows for any outcome (s, r). For example, if 

k1x is the vector for 4G+2G, and k2x is the one for 8G+2G, then 

computation would show that )(ˆ)(ˆ
12 kk QQ xx ≥  for any (s, r), 
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confirming correctly that nearbias is smaller (in absolute value) for 
8G+2G  than for  4G+2G.   

The situation is different if k1x  and k2x  do not belong to the same 
row or the same column. Then they are not hierarchically related, 

and )(ˆ)(ˆ
12 kk QQ xx ≥ will hold for some but most likely not for all 

outcomes (s, r). Especially if the difference 

))(ˆ(nearbias 1kWY x ))(ˆ(nearbias- 2kWY x  is considerable (in absolute 

value), we would like to see that )(ˆ)(ˆ
12 kk QQ xx ≥ holds in a high 

proportion of all outcomes (s, r), because it means Q̂  will with high 

probability lead to the correct decision to base the estimator on k2x  

rather than on k1x . 

We shed further light on this question by Monte Carlo experiments, 
in which 5,000 outcomes (s, r) were realized. Repeated simple 
random samples s of size 1,000 were drawn, and, for every given  s,  
r was realized according to each of the four response distributions. 
That is, unit  k  is declared “responding” if a Bernoulli experiment 
with the specified kθ  gives “success”. For several pairs of vectors 

( k1x , k2x ), we computed the proportion of the outcomes (s, r) for 

which )(ˆ)(ˆ
12 kk QQ xx − has the desired sign. It is of particular 

interest to compare vectors whose nearbias values are fairly close, so 

that Q̂  is put to a difficult test. This is the case the following 
examples (i), (ii) and (iii), where the compared vectors are non-
hierarchical. 

(i)  Comparison of 4G+2G (with vector denoted k1x ) with  2G+8G 

(with vector denoted k2x ) for IncExp(10+ 1x + 2x ). By Table 

10.1, ))(ˆ(nearbias 2kWY x = 1.5 < 1.8 = ))(ˆ(nearbias 1kWY x  and, 

correspondingly, )( 2kQ x = 8.5 > 8.4 = )( 1kQ x . Thus k2x  is the 
slightly better vector in terms of nearbias. The Q-values confirm 

this order of preference. For the Q̂ -values, the desired 

ordering, )(ˆ
2kQ x > )(ˆ

1kQ x , occurred in a substantial proportion 
of all outcomes (s, r), namely, 70.7%. 
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(ii) Comparison of  2G+2G (vector k1x ) with  4G+N (vector k2x ) 

for DecExp(y). By Table 10.4, ))(ˆ(nearbias 2kWY x = -12.2 and 

))(ˆ(nearbias 1kWY x = -12.9. Thus k2x  is the slightly better vector, 
by the absolute value of nearbias. This order of preference is 
confirmed by the Q-values: )( 2kQ x = 8.0 > 7.0 = )( 1kQ x . The 

desired ordering  )(ˆ
2kQ x  > )(ˆ

1kQ x  occurred in 78.1%  of the 
5,000 outcomes (s, r). 

(iii) Comparison of  N+2G (vector k1x ) with  2G+N (vector k2x ) for 

DecExp( 1x + 2x ). By Table 10.3, ))(ˆ(nearbias 2kWY x = -11.5 and 

))(ˆ(nearbias 1kWY x = -12.6. Hence, k2x  is the somewhat better 
vector, judging by the absolute value of nearbias. But this is one 
of the rare comparisons where the Q-values do not confirm the 
nearbias order: We have )( 2kQ x = 5.8 < 6.7 = )( 1kQ x . Not 

surprisingly then, the desired ordering )(ˆ
2kQ x  > )(ˆ

1kQ x  
occurred in less than a majority of the 5,000 outcomes (s, r), 
namely, 31.2%. 
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11. Use of the bias indicator in the 
Swedish National Crime Victim and 
Security Study 
In 2006, The Swedish National Council for Crime Prevention 
(Brottsförebyggande Rådet, acronym BRÅ) conducted a National 
Crime Victim and Security Study. As part of the study, Statistics 
Sweden carried out a survey in which 10,000 persons were sampled 
from the Swedish Register of Total Population (RTP). The survey 
objective was to measure trends in certain types of crimes, in 
particular crimes against the person. It will provide an opportunity 
to assess levels of insecurity, and how these levels vary with respect 
to various groups in Swedish society. 

A stratified simple random sample s  of 10,000 persons was drawn 
from the RTP. The strata were defined by the cross classification of 
region of residence by age group. The regions are the 21 Swedish 
administrative areas known as “län”. The three age groups were 
defined by the brackets 16-29, 30-74 and 75-79.  

This design reflects an objective to get accurate results for each of 
the 21 län as well as for each of the three age groups. The allocation 
of sample to strata was roughly proportional to the population size 
in the stratum, with minor modifications to reflect the goal of 
sufficient accuracy for the domains of particular interest, the län and 
the age groups. The overall response rate was 77.8 %. The 
nonresponse, more or less pronounced in the different domains of 
interest, interferes to some degree with the accuracy objective. 

The pool of potential auxiliary variables consisted of those in the 
RTP and a subset of those in another Statistics Sweden data base, 
LISA. All auxiliary variables are categorical. Groups were formed 
for a variable which is by nature continuous. Variables obtained 
from LISA were transcribed only to the sample data base, so they 
are of the o

kx  type defined in Section 2. 

With this survey as a background, we illustrate the use of Q̂  for a 
stepwise selection of variables, in the manner explained in Section 9. 
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In each step, the auxiliary vector kx  expands by one additional 

categorical variable, the one that yields the largest increase in  Q̂  at 
that point. A new variable joins already entered variables in the 
“side-by-side” (or “+”) manner. Table 11.1 shows the variables 
entered into kx in the first ten forward selection steps. Country of 
birth, entered in step one, is the dichotomous variable indicating 
Scandinavian born or not. Age group and sex, adjustment variables 
“by routine” in many surveys, do qualify for inclusion here, in steps 
3 and 4. The pool of potential auxiliary variables included a number 
of others, not shown in the table. 

Table 11.1 also shows the number of groups for each categorical 

variable, and the successive values of Q̂1000× . Not unexpectedly, 

the increases in Q̂  taper off after a few steps. This suggests that 
there would be little point, for bias reduction, to use more than the 
first six x -variables, and perhaps the first four would suffice.  

In the survey, estimates were produced for many categorical study 
variables, as totals or as proportions. In this context the typical 
targeted population total Y  is a population count, the number of 
persons with a specific property, relating, say, to insecurity and/or 
fear of becoming a victim of crime in some form. We thus have 

∑= U kyY , where 1=ky  if person  k  has the specific property and 

0=ky  if not. The bias remaining in the finally produced count 
estimates remains unknown. But we can follow the stepwise 
evolution of the estimates. For a selected set of study variables we 
computed the estimated count at each step in Table 11.1. That is, we 

computed WŶ  = ∑r kk yw with weights kw  based on the kx -vector 

with the variables selected up until and including the step in 
question. The estimate at step 0 was computed without any kx -

vector by direct expansion within strata, ∑
=

=
H

h
rh h
yNY

1

ˆ , where 
hr
y is 

the mean response in stratum  h. 

Some count estimates changed by two or more percentage points in 
the progression from step 0 to step 6. This must be considered a 
large change for this survey; nonresponse has a strong impact. We 
have no way to guarantee that the count estimate in step 6 is more 
accurate (less biased) than the one in step 0, but theory leads to 
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expect so. A typical pattern was that the greatest change in the 
estimate occurred in passing from step 0 to step 1; that the change 
was quite noticeable also in steps 2, 3 and 4; and that the change 
then subsided. This pattern agrees with the development over the 

successive steps of the value Q̂ , as shown in Table 11.1. For count 
variables not affected much by nonresponse, the changes were small 
in all steps. 

Table 11.1. National Crime Victim and Security Study; stepwise 
forward selection of variables for the auxiliary vector 

Step Auxiliary variable entering Number of 
groups

Value of

1000× Q̂

0 ------ -----        0
1 Country of birth 2 20.0
2 Income group 3 27.6
3 Age group 6 31.3
4 Gender 2 35.1
5 Martial status 2 38.6
6 Region 21 40.7
7 Family size group 5 41.4
8 Days unemployed 6 41.9
9 Urban centre dweller 2 42.3
10 Occupation 10 42.7
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12. Concluding comment 
This paper suggests to use the indicator Q̂  as a tool for building the 
auxiliary vector for the final calibrated weights. The bias in the final 
estimates remains unknown. We do not resolve age-old questions 
such as: What is the size of the bias? How large is the squared bias 
component of the Mean Squared Error? Definite answers are 
impossible, because the response distribution is unknown. An 
important step that can be taken, and is taken in this paper, is to 
rank different auxiliary vectors for their potential to reduce the bias.  
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